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Abstract— DDoS attack is a serious threat to the Internet.
Although some DDoS attacks with clear signatures can be
effectively countered by existing DDoS defense measures, most
DDoS attacks without clear signatures (e.g., brute-force DDoS
attacks) are very difficult to counter cost-effectively, since the
defense system is not clear which packets are DDoS packets
and which are not. Although several rate-limiting methods are
proposed to counter the unclear signature DDoS attacks, each
may drop good packets and their cost-effectiveness are not
clearly understood. People would have a more urgent need to
understand clearly the impact of the unclear signatures DDoS
attacks on their network services. This paper presents a game
theoretic analysis of the Internet’s resilience against unclear
signatures DDoS attacks when signature-based rate limiting is
deployed, where (a) countering DDoS attacks is modeled as a
Bayesian game, (b) a high volume of simulations is done to
compute the Nash equilibria of the game, (c) a family of Nash
equilibrium based resilience analyses are done, and (d) theupper
bound of the defense system’s resilience under unclear signatures
DDoS attacks and which kinds of attacking strategies are more
dangerous or more likely to be enforced by the attacker are
given in the simulations. Our analysis may substantially improve
people’s understanding about the nature of (a) the DDoS threat
and (b) the defense system’s resilience against this threat.

Index Terms— Game theory, Bayesian Game, DDoS attack.

1. INTRODUCTION

In recent years, Internet Distributed Denial-of-service
(DDoS) attacks [24] have increased in frequency, severity and
sophistication and become a major security threat. A DDoS
attack typically involves many zombies and a high volume of
packets targeting thevictim. To make sure that no host will
ever send out such a DDoS packet is not a practical goal
(due to the inherent vulnerability of computer systems), and
most of the existing DDoS defense measures focus on how to
exploit the attack-relevant information contained in a DDoS
packet (and/or a router) to filter, rate-limit, detect, or trace
back DDoS packet streams.

There are a variety types of DDoS attacks. Nevertheless,
based on whether a DDoS packet stream has some unique
features which can somehow “distinguish” itself from non-
DDoS packets, DDoS attacks can be roughly classified into
two classes: (A) DDoS attacks with clearsignatures; and (B)
DDoS attack with unclear signatures. The literature shows
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that Class A DDoS attacks may be effectively defended. For
example, (1) SYN flooding attacks can be effectively detected
[25] and countered (e.g., using SYN cookies) based on the
signature (or feature) that SYN flooding packets only ask to
but never really open a TCP connection; (2) Ingress filtering
[7] can filter out the DDoS packets whose source addresses do
not have a prefix matching the subnet of the sender. (3) Router-
based packet filtering [20] can filter out the DDoS packets
whose (spoofed) source addresses indicate that to reach the
destination, they should never be forwarded by a specific router
who is however forwarding them (during the attack).

However, Class B DDoS attacks are in general very difficult
to counter cost-effectively. For one example, brute-forceDDoS
attacks (e.g., the Mstream DDoS attack) use authentic source
addresses and do not exploit any security hole of TCP, ICMP,
or UDP, but they can be very harmful and difficult to counter
when a large number of zombies are sending DDoS packets
while each one does not send a high volume of packets. Detect-
ing class B DDoS attacks is difficult and time consuming since
they do not have clear signatures. Although tracing-back isa
technically easier job for Class B DDoS attacks, it is primarily
a reactive technique; it can stop severe DDoS phenomena from
continuing but cannot prevent them from happening.

Fortunately, several proactive Class B DDoS defense meth-
ods are recently developed and are promising. We call them
signature-based rate limiting(SBRL) techniques since they are
all based on the idea of making the routers be able to identify
and rate-limit a specific set of packet streams (or aggregates)
that are very possible to cause congestion or DoS. Each of the
specific set of packet streams will match a specificsignature
which is associated with a unique feature of the packet stream.
A representative SBRL technique ispushback[14]. Although
the merit of SBRL is shown by some experiments, SBRL
may drop good packets and its cost-effectiveness is not clearly
understood due to several reasons. (1) Since Class B DDoS
attacks do not have clear signatures, SBRL cannot guarantee
that no good packets will be put into a rate-limited packet
stream, and good packets can be dropped together with DDoS
packets. (2) The effectiveness of defense measures such as
SBRL is relative to a specific Class B DDoS attack. A SBRL
technique may very effective to a Class B DDoS attack, but it
may not still effective to another kind of Class B DDoS attack.
On the other hand, a Class B DDoS attack that defeats a SBRL
mechanism may be defeated by another SBRL mechanism.
The relative nature indicates that Class B DDoS attack and
SBRL have interdependent relationship.
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As Class A defense measures are more and more widely
deployed, the attacker may be “forced” to enforce more Class
B DDoS attacks which can surround these Class A defense
measures and cause serious DDoS effects. As people are
experienced with more Class B DDoS attacks, people would
have a more urgent need to understand clearly the impact of
Class B DDoS attacks on their network services, the overall
resilience of the Internet’s against Class B DDoS attacks, and
the better defense strategies.

This paper presents a game theoretic analysis of the Inter-
net’s resilience against Class B DDoS attacks when signature-
based rate limiting is deployed, where (a) countering Class
B DDoS attacks is modeled as a Bayesian game, (b) a high
volume of simulations is done to compute an approximate
solution of the game, and (c) a family of Nash equilibrium
based resilience analyses are done. Our analysis shows that
the Nash equilibria (of the game) and the associated payoffs
indicate how resilient the defense system is. Our analysis
not only estimates theupper bound of the defense system’s
resilience under Class B DDoS attacks, but also shows that
the distribution of the Nash equilibria over the set of at-
tack/defense strategy parameters indicates (1) which kinds of
DDoS attacks are more likely to be enforced by the attacker
and (2) which kinds of SBRL mechanisms are more effective
in the simulation.

To out best knowledge, this study is the first game theoretic
(optimization) analysis of DDoS attacks and defense. The
relativity (or strategy-interdependence) nature of defending
against Class B DDoS attacks implies the unique advantage
of the game theoretic analysis performed in this paper. Our
analysis may substantially improve people’s understanding
about the nature of (a) the DDoS threat and (b) the Internet’s
resilience against this threat. The insights gained through this
study may motivate new breakthroughs in DDoS research.

The rest of the paper is organized as follows. We discuss the
rationale of game theoretic analysis in Section 2. In Section 3,
we propose our game model and analyze the solution. We
present a simulation-based solution to the game, and perform
the family of Nash equilibrium based resilience analyses in
Section 4. In Section 5, we discuss the legitimate user aspect
of the game and the impact of changes of network scenarios.
We address the related work in Section 6 and conclude the
paper in Section 7.

2. THE FIGHTING BETWEENCLASS B DDOS ATTACKS

AND SBRL IS A BAYESIAN GAME

The fundamental characteristics of the Class B DDoS
attacks–SBRL relationship is interdependent. When fighting
with Class B DDoS attacks, the effectiveness of SBRL depends
on not only its strategy, but also the attacker’ strategy. Onthe
other hand, when fighting with SBRL, the effectiveness of the
Class B DDoS attacks depends on not only attacker’s strategy,
but also the system’s strategy. Besides, the legitimate users
strategies also affect the strategies and payoffs of both the
defense system and the attacker. Game theory is the primary
tool to handle the strategic interdependence.

A Bayesian game [8] is an incomplete information game,
which includes a set of player, a strategy spaces for each

player, a type set for each player and payoff functions of
players. In a game, the sets of players, the set of actions and
the utility functions are known by all players while the type
of the player is private. Each player knows the type of himself
but none of others. A player knows the probability distribution
of other players’ types.

Similarly, between a Class B DDoS attacker and a SBRL
defense system, the defense system and the attacker can learn
the strategy space, the payoff functions of each other from
public, such as websites or technical reports. Nevertheless,
the defense system dose not know which traffic is really
malicious or legitimate. When the defense system identifiesa
malicious traffic, it is possible that the defense system makes
mistake. Only the attacker knows which traffic are his and
legitimate users know which traffic are their. The information
they have perfectly matches the definition of a Bayesian game.
So we believe the game between the DDoS attacker and SBRL
defense system is a Bayesian game.

Kodialam uses azero-sumgame [19] to model the detect of
network intrusion and Lye uses a stochastic game to model
the attacker and the administrator [13]. Both the zero-sum
and stochastic games assume that the player knows other
players very well. But in the Class B DDoS attacks, SBRL
cannot distinguish the malicious user from legitimate users
accurately. The zero-sum and stochastic games cannot handle
the situation with incomplete information about the players’
type, while a Bayesian game is perfect to model the game
with this uncertainty. So, we believe that our Bayesian model
is more suitable to model Class B DDoS attacks vs. SBRL
defense system than the zero-sum and stochastic games.

3. MODELING DEFENDINGDDOS ATTACKS

3.1. Our model

We model the game between the Signature-based rate lim-
iting defense system and users (the attacker and legitimate
users) with a specific 2-player Bayesian game. Before we
introduce the formal form of the game model, we define the
set of players, the strategy space, the type set, the belief set
and the payoff function for each player first.

There are two players in the game. One is the defense
systemd and the other is the useru (the attacker or the
legitimate users, note that the defense system cannot identify
the attacker clearly). The strategy space of the defense system
is Ad, which consists of defending tasks.

We use communication task, e.g., visiting a web-sites,
transferring file or a DDoS attacking, to construct the strategy
space of the user (Au). The task can be characterized bythe
number of sources, the destination, the rate, the traffic pattern
and so on. Each task may involve more than one host. For
example the attacker may have many zombies to launch an
attack. The defense system has only one type, so its type
set is Td = D. The user has two types, say, attacker (A)
and legitimate user(L), so the type set isTu={L, A} and
the user type is privately known by the user himself. The
defense system hasbelief about the probability distribution of
the user’s type. The belief set of the defense system isPd =
{Pd(A|D), Pd(L|D)}. If Pd(A|D)=θ, which indicates that the
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defense system believes that the possibility of a user beingan
attacker isθ, given its own type isD. ThenPd(L|D)=1 − θ.
The belief set of the user isPu ={Pu(D|L), Pu(D|A)}
andPu(D|L)=Pu(D|A)=1. When the defense system and the
attacker select their strategies, each of them gets some payoffs,
which is determined by their payoff functions{Uu, Ud}.

The formal form of the game is denoted by DDoSGM={Au,
Ad, Tu, Td, Pu, Pd, Uu, Ud}, whereAu={T1,· · · Ti,. . . ,Tn}
is the strategy space of users.Ti is a communication task.Ad

={D1,· · · , Di,· · · ,Dm} is the strategy space of the defense
system.Di is a defense task.Tu and Td are type spaces of
the user and the defense system respectively.Pd is the belief
set of the defense system,Pu is the belief set of the user.

Uu(Di, Ti; L)= Ul = Blo/Blw and
Ua(Di, Ti; A)=Ua=αBao/Bt + (1 − α)(1 − Blo/Blw)
are the payoff functions for the legitimate user and the
attacker respectively, whereBlo is the network bandwidth
occupied by the legitimate user,Blw is the bandwidth that
legitimate users want to occupy,Bao is the bandwidth
occupied by the attacker andBt is the target network
bandwidth that the attacker tries to attack,α is the weight
and less than 1.

Ud = (1 − θ)UL
d (Di, Ti; L) + θUA

d (Di, Ti; A),
UL

d (Di, Ti; L) = Blo/Blw and Ua
d (Di, Ti; A) = −Bao/Bt,

is the payoff function of the defense system, where
UL

d (Di, Ti; L) and UA
d (Di, Ti; A) are payoffs of the system

given the users type is L(legitimate) and A(Attacker)
respectively.

The payoff functions represent interests. For the legitimate
users, they mainly concern whether they can obtain the net-
work bandwidth that they need.Ul represents the obtained
service ratio of legitimate user. For the attacker, he wants
to consume as more resources as possible to prevent the
legitimate users from getting service.Ua represents the attack-
ing capacity of the attacker. The attacker has two interests,
occupied malicious bandwidth ratioBao/Bt and legitimate
users’ service loss ratio1−Blo/Blw. The occupied malicious
bandwidth ratio determines the upper bound of the available
bandwidth for legitimate users and it is also an very important
goal in degrading DDoS attack[17]. For example when the
legitimate traffic rate is only 5 percent of bandwidth and
Bao/Bt = 0.9, although the legitimate users’ service loss ratio
is zero, attacker knows the available bandwidth for legitimates
users at most 10 percent of the bandwidth.α weights the
interest of the attacker and its value is between 0 and 1.
If the attacker is more interested in occupying the network
bandwidth, then he can increase theα. For the defense system,
it would like to supply all the resources to legitimate usersand
do not give resources to bad ones.Ud represents the resilient
capacity of a defense system against the DDoS attacks. Each
of the maximum obtained service ratio of legitimate users, the
maximum attacking capacity of the attacker and the maximum
resilient capacity of the defense system is 1.

All of the legitimate users, the attacker and the defense sys-
tem want to find the Nash equilibria strategies(T l∗, T a∗, D∗)
from their strategies spaceAu, Ad to maximize their payoffs,
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Fig. 1. An example of DDoS attacks scenario

where(T l∗, T a∗, D∗) must satisfy:

Uu(D∗, T l∗; L) ≥ Uu(D∗, T l
i ; L) (1)

Uu(D∗, T a∗; A) ≥ Uu(D∗, T a
i ; A) (2)

(1 − θ)UL
d (D∗, T l∗; L) + θUA

d (D∗, T a∗; A)

≥ (1 − θ)UL
d (Di, T

l∗; L) + θUA
d (Di, T

a∗; A) (3)

where T l
i ∈ Au ∧ T l∗ 6= T l

i , T a
i ∈ Au ∧ T a∗ 6= T a

i and
Di ∈ Ad ∧ D∗ 6= Di.

In the paper we mainly consider strategies and payoffs of
the attacker and the defense system since they are the most
active players who monitor the payoffs all the time and change
their strategies. We discuss the legitimate users strategies and
payoffs in session 5.

3.2. Analytic solution

In this section, we give the analytic solution considering
relative restrict assumptions. To solve(T l∗, T a∗, D∗), we need
to calculate payoffs first. consider the network in Figure 1.
In the Figure, the attacker launch Class B DDoS attacks to
consume the bandwidth of linkV . The circles are hosts, and
the rectangles are routers. Except for the router at the highest
level, each router has a fan-in ofλ. The bandwidth of linkV is
B. The routers haveN levels and there are totallyM = λN−1

hosts. Each host connects to a router at levelN . The router
j at level i is denoted asRi,j . We assume that there areMA

zombies andML legitimate users. Each zombie sends packets
to V at ratera and each legitimate user sends packets toV
at raterl. The signatures of malicious traffic and legitimate
traffic are sa and sl respectively, which are related to the
source address, destination address, flow id, aggregate and
other properties of the traffic. We assume that there is a SBRL
defense system consists of the routers along the path from
zombie to the victim. For simplicity, we do not consider the
legitimate traffics that go through the routers and are not sent
to V although they may be affected by the defense system. For
each routerRi,j , we denote the malicious and legitimate traffic
incoming rate toRi,j by Ri,j,Ain andRi,j,Lin respectively. We
denote the malicious and legitimate traffic outgoing rate from
Ri,j by Ri,j,Aout andRi,j,Lout respectively.

The SBRL mechanism cannot identify the malicious signa-
ture accurately. The routers may drop some legitimate packets
and let some malicious packets pass. We define that the false
positive dropping ratio (FPDR) and the false negative dropping
ratio (FNDR) for Ri,j are FPi,j and FNi,j . FPi,j is given
by the number of packets dropped byRi,j as attack packets
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that are in fact legitimate, divided by the total number of
legitimate packets.FNi,j is given by the number of malicious
packets that passRi,j as legitimate packets, divided by the
total number of malicious packets. In fact, some routers may
not drop packets since they did not detect any congestion or
receive any requests to control the traffic. We consider that
these routers are also part of the defense system and their
FPDR is 0 and FNDR is 1. We assume that the routers in the
defense system have same configurations, which is denoted
by C. We also assume the router based on the incoming
traffic and its configurations to identify and control the traffic.
Then, we haveFPi,j = f(Ri,j,Ain, Ri,j,Lin, sa, sl, C) and
FNi,j = g(Ri,j,Ain, Ri,j,Lin, sa, sl, C)

We assume that the zombies and legitimate users are unified
distributed among the hosts. For each routerk at the level
N , The RN,k,Ain = raMA

λN−1 , RN,k,Lin = rlML

λN−1 . For each
router at levelN , the incoming traffic is same, so does the
outgoing traffic. Similarly, for each router at the same level, the
incoming traffic is same. Then, the FPDR and FNDR are same.
Therefore, for the routers at levelj FPj,1 = FPj,2 = · · · =
FPj,λi−1 = FPj and FNj,1 = FNj,2 = · · · = FNj,λi−1 =
FNj .

In the example, the attacker’s strategy is determined by
〈MA, ra, sa〉; the legitimate users’ strategy is determined by
〈ML, rl, sl〉; and the defense system’s strategy is determined
by 〈C〉. We setα = 0.5. The payoff of each player is

Ul = R1,Lout =

N∏

j=1

(1 − FPj)

Ua = R1,Aout =
raMa

∏N

j=1
FNj

2B
+

(1 −
∏N

j=1
(1 − FPj))

2

Ud = (1 − θ)

N∏

j=1

(1 − FPj) − θ
raMa

∏N
j=1

FNj

2B

The Nash equilibria strategies
{〈M∗

L, r∗l , s∗L〉, 〈M
∗

A, r∗a, N∗, s∗a〉, 〈C
∗〉} are described by

the following equations. The Nash equilibria strategies satisfy

Equation 1, 2 and 3. We have

N∏

j=1

(1 − FP ∗

j )) ≥

N∏

j=1

(1 − FP li)) (4)

r∗aM∗

A

∏N

j=1
FN∗

j

2B
+

1 −
∏N

j=1
(1 − FP ∗

j )

2
≥

ri
aM i

A

∏N

j=1
FNai

j

2B
+

1 −
∏N

j=1
(1 − FP ∗

j )

2
(5)

(1 − θ)

N∏

j=1

(1 − FP ∗

j ) − θ
r∗aM∗

A

∏N

j=1
FN∗

j

2B
≥

(1 − θ)

N∏

j=1

(1 − FP di
j ) − θ

r∗aM∗

A

∏N

j=1
FNdi

j

2B
(6)

FP ∗

j = f(R∗

j,Ain, R∗

j,Lin, s∗a, s∗l , C
∗) (7)

FN∗

j = g(R∗

j,Ain, R∗

j,Lin, s∗a, s∗l , C
∗) (8)

FP li
j = f(R∗

j,Ain, Ri
j,Lin, s∗a, si

l , C
∗) (9)

FNai
j = g(Ri

j,Ain, R∗

j,Lin, si
a, s∗l , C

∗) (10)

FP di
j = f(R∗

j,Ain, R∗

j,Lin, s∗a, s∗l , C
i) (11)

FNdi
j = g(R∗

j,Ain, R∗

j,Lin, s∗a, s∗l , C
i) (12)

In Equations,M i
L, ri

l , s
i
L ∈ Au ∧ i 6= ∗ is a strategy in the

attacker’ strategies spaces ,M i
A, ri

a, N i, si
a ∈ Au ∧ i 6= ∗

is a strategy in the legitimate users’ strategies spaces, and
Ci ∈ Ad ∧ Ci 6= C∗ is a strategy in the defense system’s
strategies spaces.

4. SIMULATIONS

In this section we evaluate the Nash equilibria strategies
by simulation. we start from the network configuration, then
we describe how the attacker and system strategies affect the
capacity of the attacker and the defense system. After that
we analyze the Nash equilibria (optimal) strategies, the upper
bound of the resilient capacity of the defense system and
attacking capacity of the attacker. Finally we discuss which
kinds of strategy are more likely to be enforced by the attacker
and the defense.

4.1. Network configuration

Our simulation system is based on ns-2 [1]. In our simula-
tion, we select Pushback as the defense mechanism. Pushback
is a kind of signature-based defense scheme. Unlike other
defense systems that usually identify the signature based on the
flow, source or destination address, Pushback usesaggregate(a
collection of packets from one or more flows that have some
property in common) to construct thecongestion signature.
The defense system can choose various aggregate properties
according to the different attack scenarios to identify the
congestion signature more accurately, which makes pushback
more flexible, comprehensive and effective against the DDoS
attacks.

Pushback has two Aggregate-based Congestion Control
(ACC) mechanisms. The first is Local ACC and the second
is Pushback. Local ACC consists of an agent to identify the
congestion signature based on the given aggregate property
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Fig. 2. Network topology

and a rate limiter before the output queue to control the
corresponding aggregates to a reasonable level. When the
router detects a congestion, it will request adjacent upstream
routers to rate-limit the corresponding aggregates by sending
pushback message. The message includes the malicious aggre-
gate signature and the threshold of rate limit. There are good
users, poor users and attackers in Pushback. The poor users
and good users are both legitimate users. The packets sent by
poor users have the same aggregates as the bad users, so they
may be considered as bad ones by the defense system.

Figure 2 is the network topology of our experiment, which
is similar with Figure 1 and is the same as the experimental
topology of Pushback [14]. In the figure, the circles represent
the source hosts, we randomly select zombies of attacker and
legitimate users from these hosts. Zombies launch the ClassB
DDoS attack by flooding packets. The rectangles represent the
routers. Except for the router at the lowest level, each router
has a fan-in of 4. Every router has a Pushback agent to detect
and control the traffic. The link bandwidths are shown in the
Figure, and have been allocated such that congestion is limited
to the access links at the top and bottom. We setα = 0.5 and
θ = 0.99 when we calculate the payoffs.

4.2. Strategies for the defense system and the attacker

The system’s strategies have many parameters, such as
the number of routers, the topology, the configuration of
each router and so on. In our experiments, for the given
topology we mainly concern some specific parameters in each
router. Let Ad = 〈aggregate property, congestion checking
time, cycle time, target drop rate, free time, rate limit time,
maximum session〉. The default value of the the parameters are
〈destination address prefix, 2s, 5s, 0.05, 20s, 30s, 3〉, which
are explained as follows.

In pushback, agents identify the malicious traffic based
on the aggregate property. The aggregate property usually
includes the destination address prefix, source address pre-
fix, the protocol layer, the flow id or their combinations.
Congestion checking timeis the interval time that the router
checks congestion. When serious congestion is detected, the
Local ACC will identify the aggregate(s) responsible for the
congestion.Cycle time is the interval time that the agent
reviews the limit imposed on the aggregates and sends refresh
to the adjacent upstream routers to update the rate limit. The
target drop rateis the upper bound of drop rate of the output

queue. In order to achieve the giventarget drop rate, the rate
limiter should let the rates sending to the output queue be less
thanB/(1−tdr), whereB is the bandwidth of the output link
andtdr is the target drop rate.Free timeof the limited session
is the earliest time to release an limited aggregate after itgoes
below the limit imposed on it.Rate limit time determines
the period that the rate limiter controls for each identified
aggregate, After the period, the agent will check whether the
aggregate is still needed to be rate limited.Maximum session
determines the maximum sessions (aggregate) the rate limiter
can control.

In the simulation, for the attacker’s strategies, we mainly
concern the〈number of zombies, ratio, traffic pattern, at-
tacking traffic aggregates〉. We set the number of zombies
as 12 (FEWBAD) or 32 (MANY BAD). If the total rate of
attacking traffic is stable, then each zombie has lower send-
ing rates under MANY BAD. We got three typical traffic
from http://ita.ee.lbl.gov/html/traces.html. They areRATE1 =
67.1kbps(the rates to a web-site at the rush hour),RATE2
= 290kbps (the average rates from an Intranet to Internet)
and RATE3 = 532kbps (the rates from an Intranet to Internet
at the rush hour). In this paper, we use the three rates to
set up three typical scenarios. We set the total poor rate
as the RATE1, RATE2 and RATE3 since the poor traffic is
sent to the same destination as the bad traffic. Theratio is
given by the total rate of the attacking traffic, divided by
the total rate of the poor traffic. We set theratio as 30,
35, 40, 35 and 50(inRATE3, the ratio is 30,35 and 40). For
example, when the poor rates is 67.1kbps, the total attacking
traffic rate is 2013kbps, 2348.5kbps, 2684kbps, 3019kbps and
3355kbps respectively, which is larger than the bandwidth of
the target link. There are 4 kinds of traffic patterns for attack-
ers, Constant bits rate(CBR), Exponential(EXP), ICMP and
Mixed (half CBR and half ICMP). According to the different
aggregate properties, the attacking traffic can be divided into
several aggregates. For example, when the aggregate property
is destination address prefix and zombies send packets to one
victim, then the attacking traffic belongs to one aggregate.If
zombies send packets to with three destination prefix address,
attacking traffic has three aggregates.

Legitimate users’ strategies also affect the payoffs of system
and attacker. Regarding the legitimate users’ strategies,the
good traffic is always sent to different destinations from the
victims and its aggregate differs from the attack aggregate. We
set number of poor users as 2 (FEWPOOR) or 4 (MANY POOR)
and number of good users as 5 (FEWPOOR) or 10 (MANY-
POOR). For simplicity, we just set the sending rate from each
good user is same as that of the poor user. So when the poor
rate goes up, the legitimate rate goes up also. Legitimate traffic
only use CBR pattern.

Figure 3 and Figure 4 show how the system and attacker
strategies affect the attacking capacities of attacker andsystem
resilience respectively. Axis X is for the attacker’s strategies.
Attacker has 40(24) strategies inRATE1 andRATE2 (RATE3).
In the first 20 (12) strategies, the number of zombies is
FEWBAD, followed by 20 (12) strategies with the number
as MANY BAD. For each 5 (3) strategies in each 20 (12)
strategies, attacking traffic patterns are ordered as CBR, Ex-
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ponential, ICMP and Mixed. In each 5 (3) strategies, the data
is ordered according to the ratio, which is 30,35,40,45 and 50
(30,35 and 40).

In the first three subfigures in each figure, the aggregate
property is DEST (destination address prefix). Then followed
by three figures with DESTPATT (destination address prefix
plus traffic pattern) aggregate property. We let the zombiesand
poor users send packets to one destination address. Since the
attacking traffic has three type of traffic pattern (the defense
system regards the Mixed traffic as CBR and ICMP), the
attacking traffic has three aggregates. The poor traffic is CBR
and shares one aggregates with the attacking traffic. In the
following three figures, the aggregate property is DESTPORT

(destination address prefix plus port number). We let the
zombies send packets to one victim but four different port
number, so the attacking traffic has four aggregates. We let
the poor users send packets to the same victim but different
port number. For the last three figures, the aggregate property
is SOUR (source address). The defense system uses the source
address as the aggregation property. Attacking traffic has
12(FEWBAD) or 32(MANY BAD) aggregates in this strategy.
In the simulator, we set the maximum session larger than
the number of attacking traffic aggregates. So the routers can
control all attacking traffic.

Axis Y is for system’s strategies, which are ordered as
congestion checking time (4s), cycle time(10s), drop rate
(0.03), drop rate (0.07), free time (10), free time (30), default
configuration, rate limit time (15), rate limit time (50),maxi-
mum session(5)when the aggregate property is DEST. In the
first 9 strategies, we let the attacker sends packets to one
victim, so the attacking traffic belongs to one aggregate. In
the last strategy, in order to observe what will happen when
the attacking traffic has multiple aggregates, we let the attacker
send packets to 4 subnet, so the attacking traffic has 4 aggre-
gates. When the aggregate property is DESTPATT, DESTPORT

or SOUR, there is no maximum session (5) strategy, since all
the attacking traffic has multiple aggregate.

4.3. The defense capacity vs. DDoS attack capacity

Figure 3 and Figure 4 show the capacity of the defense sys-
tem and the attacker. We consider four parameters for attacker
in our observations. The influence of attacker strategies isas
follows.

Number of zombies When the number of zombie is
MANYBAD , the system earns lower resilient capacity and the
attacker earns higher attacking capacity. When the aggregate
property is SOUR, the number of zombie affects the system
and attacker’s results greatly.

Ratio The ratio affects the attacker’s attacking capacity only
when the poor rate is 67.1kbps, the traffic pattern includes
ICMP (ICMP or Mixed) and the number of zombie is Many.
In this situation, attacker gets higher attacking capacitywhen
the ratio goes up. In other strategies, the ratio does not affect
the attacker’s attacking capacity much.

Pattern When the poor rate is low, the system earns high
resilient capacity and the attacker earns low attacking capacity
if the attacker sends ICMP packets. When the poor rate

increases, the traffic pattern does not affect the capacity of the
attacker and defense system whatever the aggregate property is
DEST, DESTPORT or SOUR. In DESTPATT, the traffic pattern
affects the payoffs because the router constructs the signature
based on the destination address prefix and traffic pattern.
When the poor rate isRATE2 or RATE3, attacker earns high
attacking capacity when the attacking traffic is Mixed.

The number of aggregatesWe simulate how the number of
traffic aggregates affects the results only in DEST. The system
gets low assurance capacities when the attacking traffic has
multiple aggregates, which is shown in Figure 3(a), Figure 3(b)
and Figure 3(c). The attacker gets high attacking capacity
when its traffic has multiple aggregates, which is shown in
Figure 4(a), Figure 4(b) and Figure 4(c),

The influence of system’s strategies is as follows.(1) The
cycle time, drop rate, rate limit time and aggregate property
affect payoffs, other system strategies do not affect the results
much.(2)The system always gets high resilient capacity when
the drop rate is 0.03 and gets low resilient capacity when
the drop rate is 0.07. The system sometimes also gets high
resilient capacity under cycle time (10s) and rate limit time
(50s) strategies.(3) The destination address based aggregate
property is better than the source address based aggregate
property for the system. The system gets the lowest resilient
capacity when the aggregate property is SOUR. In SOUR

strategy, attacking traffic has 12 (32) aggregates. So the rate
difference between each attack aggregate and each legitimate
aggregate is less than that in other strategies. It is more
difficult for the router to identify the malicious traffic and
more legitimate packets may dropped. The accurate congestion
responsible aggregate property the system can identify, the
high resilient capacity the system can obtain. For example,
using DESTPATT or DESTPORT is better than using DEST

only for the defense system.

4.4. Optimal attack and defense strategies

The Nash equilibria of the game specify the expected-
utility maximizing best-response of one player to every other
player. Hence the Nash equilibria strategies are the optimal
strategies for attacker and defense system. We know that
aggregate property determines how defense system identities
the attacking traffic, so it is a very important parameter for
the defense system. We calculate the optimal strategies for
each aggregate property and network scenario (different rate)
from the payoff vectors (totally 16224) we got. We set the
relative error as 0.005 for the payoffs of the attacker and the
defense system and get 100 Nash equilibria. In other words,
if the difference between two payoffs of one player is less
than the relative error, we treat them as the same one. Due to
the limit space, we list only 16 detail descriptions of the Nash
equilibria strategies, system’s resilient capacities andattacker’s
attacking capacities in Table I, where the attacker’s strategies
are list in the sequence of〈number of zombies, ratio, traffic
pattern, number of aggregate〉.
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Fig. 3. The resilient capacity of the system under differentsystem and attacker’s strategies
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Fig. 4. The attacking capacity of the attacker under different system and attacker’s strategies
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TABLE I

THE OPTIMAL STRATEGIES AND CAPACITIESA

system strategy attacker strategy AttC RC
DEST,dr0.03 MB, 45, CBR, OA 0.459 0.9495
DEST,dr0.03 MB, 50, CBR, OA 0.459 0.9495
DEST,sess5 FB, 50, EXP, MA 0.489 0.9218
DEST,sess5 MB, 45, CBR, MA 0.472 0.9267
DESTPATT,dr0.03 FB, 30, CBR, MA 0.458 0.9495
DESTPATT,dr0.03 MB, 45, EXP, MA 0.456 0.9436
DESTPATT,dr0.03 MB, 30, CBR, MA 0.462 0.9435
DESTPORT,dr0.03 MB, 30, CBR, MA 0.458 0.9505
DESTPORT,dr0.03 MB, 35, CBR, MA 0.456 0.9525
DESTPORT,dr0.03 MB, 45, CBR, MA 0.455 0.9554
DESTPORT,dr0.03 MB, 30, CBR, MA 0.298 0.9145
a dr0.03 - target drop ratio (0.03).sess5 - maximum session

(5). cyct10-cycle time (10s). FB-Fewbad. MB-Manybad. OA-
One Aggregate. MA-Multiple Aggregates. AttC-Attacking
Capacity. RC–Recilient Capacity.
Both the attacker and the defense system prefer to choose

an optimal strategy. Therefore, when DDoS attacks occur, they
will finally stay at an optimal strategy and no one wants to
move. SoRC is the upper bound of the defense system’s
resilient capacity against DDoS attack andAttC indicates the
the upper bound of the attacking capacity of the attacker. When
the defense system or the attacker move to another strategy
their payoffs will be less than the upper bound.

We found most Nash equilibria occur when the target-
droprate-rate is 0.03 and the number of zombies is MANY-
BAD. When the aggregate property is DEST, many Nash equi-
libria occur when the attacking traffic has multiple aggregates.
We can also observe the optimal strategies from thedominant
strategiesin Figure 3 and Figure 4. For example in Figure 3(b),
we found the drop rate (0.03) is the dominant strategy for the
defense system, sinceUd(ai, ddroprate0.03) > Ud(ai, di) for
all ai ∈ Au and di ∈ Ad ∨ di 6= ddroprate0.03. No matter
what the attacker will do, the defense system always gets its
highest resilient capacity when the drop rate is 0.03. In order
to get high resilient capacity, the system should stay at the
drop rate 0.03 and does not move. Therefore, there should be
at least one optimal strategy under droprate (0.03) strategy.
From the Table I, we found that there exists Nash equilibria
under droprate 0.03.

4.5. Attack prediction

The attacker and defense system will definitely choose or
ultimately converge to a Nash equilibrium strategy to fight
each other. The distribution of Nash equilibria strategiesshows
which kind of strategies are most likely to be taken by the
attacker and the defense system. The distribution of Nash
equilibria strategies helps us to predict what the attackerwill
do even before the attack occurs and to suggest how to build
a high resilient defense system.

Consideringratio, number of zombiesandsystem strategy.
the distribution of Nash equilibria is as follows.

(1) The attacking rate does not affect the Nash equilibria
much, which is shown in Table II. The probability of the
Nash equilibria for all ratios have little differences. It seems
when the attacker sends more packets to the victim, the
attacker should always occupy more bandwidth and get higher
attacking capacity. But we found that Pushback works stable
when the attacker increases the attacking rate. In other words,

TABLE II

THE NASH EQUILIBRIA DISTRIBUTION UNDER DIFFERENT ATTACKING

TRAFFIC RATIO

Aggregate 30 35 40 45 50
DEST 0.2542 0.3051 0.0678 0.0678 0.3051
DESTPATT 0.2422 0.1111 0.1111 0.3333 0.2022
DESTPORT 0.2625 0.3000 0.0625 0.1250 0.2500
SOUR 0.1875 0.2500 0.2500 0.0625 0.2500

high attacking rate cannot help the attacker to maximize his
attacking capacity.

(2) Most Nash equilibria occur when the number of zombies
is MANYBAD , which is shown in Table III. Under SOUR

strategy, the probability that the Nash equilibrium happens is
1 when the number of zombies is MANYBAD . So when the
attacker launches attacks, he had better use more zombies to
maximize his interests. More zombies will not increase the
costs of the attacker, since the attacker usually uses automatic
tools to install agents.

(3) Most Nash equilibria occur when the target-drop-rate is
0.03 or when the maximum session is 5(DEST). The probabil-
ity that the Nash equilibrium happens is at least 0.2 under
target-drop-rate(0.03) strategy. Under DEST and maximum
session (5) strategy, the probability that the Nash equilibrium
happens is more than 0.5. So we should set Pushback with
low target drop rate and large value of maximum session to
maximize its resilience against DDoS attacks.

In order to get high interests, the attacker should use more
zombies, CBR (UDP based) traffic and multiple aggregates.
The defense system should use low target drop rate and large
value of maximum session. Knowing the distribution of Nash
equilibria, we can predict the profile of next action of the
defense system and attacker. By calculating the Nash equilibria
strategies, we can obtain more information about the next
action.

5. DISCUSSION

Legitimate users’ obtained service ratio and strategies
The legitimate users’ obtained service ratio depends on not
only the strategies of themselves but also the strategies ofthe
attacker and system. When the poor rate is high, the legitimate
users earn low obtained service ratio since many packets are
dropped by the defense system. For the defense system’s
strategy, legitimate users always get the highest obtained
service ratio when the target-drop-rate is 0.03 and get the
lowest obtained service ratio when the target-drop-rate is0.07.
Legitimate users earn higher obtained service ratio when the
aggregate property is DESTPORT since the defense system can
identify the malicious signature more accurately. Regarding
the attacker’s strategies, we found that the legitimate users
earn high benefits when the number of zombies is FEWBAD.
The other attacker’s strategies, such as the traffic pattern, has
little effect on the availabilities of legitimate users.

Legitimate users’ strategies also affect the capacity of sys-
tem and attacker. For example, when the poor rate increases,
the resilient capacity of the defense system goes down since
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TABLE III

THE NASH EQUILIBRIA DISTRIBUTION UNDER DIFFERENT COMBINATION OF USERSA

Aggregate Property FFF FFM FMF FMM MFF MFM MMF MMM
DEST 0 0 0.0169 0 0.1186 0 0.2373 0.6271
DESTPATT 0 0 0 0.3333 0 0 0.3333 0.3333
DESTPORT 0 0.2500 0 0 0.1875 0.4375 0.1250 0
SOUR 0 0 0 0 0 0.1250 0 0.8750
a F–Few, M–Many. The first F or M is for the number of zombies, thesecond and the third one are

the number of poor and good users.

more legitimate packets are dropped by the system. When the
number of legitimate users is MANY , the resilient capacity
of the defense system goes up since the legitimate traffic
distributed widely.

Changing the network scenariosWe use ns-2 as our sim-
ulator, the topology and strategies are based on the pushback
simulation scenario. We found that the experimental results
consist to the real cases and speculation. For example, we
found that deploying more zombies is good for the attacker.
In real DDoS attacks, an attacker really prefers to use more
zombies. That the lower target-drop-rate is good for system
matches our speculation. When the target-drop-rate is low,the
limit on the controlled aggregates will be lower and more bad
packets will be dropped by the defense system.

When the topology, the strategies, the defense system or
some other parameters changed, if the defense system is
signature based rate limiting and the DDoS attack is bandwidth
consumed, though the upper bound of capacity and the Nash
equilibria strategies will change, our game theoretic analysis
framework can still apply to analyze the game if mechanisms
of the attacker and defense system changed. For example, the
defense system is a trace back system, we may need a new
model since the interests changed. But our game theoretic
analysis frame still can be applied to enhance people’s un-
derstanding the interactions between the defense system and
the attacker.

6. RELATED WORK

In recent years, the researches of DDoS mainly focus on
the attack analysis [5], [6], intrusion detection [2], [25]and
such defense mechanisms as traceback [3], [23], [26], rate-
limiting [9], [14], [16] and filtering [7], [18], [20]. Intrusion
detection is used to determine whether the network is under
attacking. Traceback provides the information about where
the attacking traffics come from. Filtering mechanisms try
to filter out the attack stream completely based on some
detection methods. Rate-limiting method impose a rate limit
on a stream that has been identified as malicious by the
detection mechanisms. All the work focus on mitigating the
effects of attacks, which cannot solve the problems about what
are the optimal strategies for the attacker and the defense
system, what the attacker and the defense system will do to
maximize their benefits. Game theory can help us to solve the
problems.

Game theory is widely used in the network field such
as high-speed network [21], routing policy [10] and flow
control [15]. Game theory is a primary tool to handle strategic
interdependence, which is the fundamental characteristics of

the attack-defense relationship in computer security. Kodialam
proposed a zero-sum game to detect the malicious packets
in [19]. In [22], Syverson proposed a two-person game be-
tween the good network and evil network. They showed that
networks ofn interacting nodes need not to be represented
by an n-person game: they can often be represented in a
two-person game. Lye et al view the interaction between an
attacker and the administrator as a two-player stochastic game
and construct a model for the game in [13]. They give Nash
equilibria strategies of the players and explain how to use these
results to enhance the security of network. In [4], Browne
use static games to analyze attacks of military network. A
defending team, which determine whether to run a worm
detector based on the outcome of combined attack and defense
actions. Our previous work [11], [12] presented a general
incentive-based method to model attacker’s intent, objectives
and strategies. We used the same game-theoretic approach.
However, we focused more on the modeling and framework
instead of detailed analyses and simulations in this paper.

Our work differs from previous work in that (1)none of
them model the game about defending DDoS attacks before,
(2)we use Bayesian game to model defending DDoS attacks
and analyze the game based on the motivation, strategies and
capacities of the attacker and the defense system. (3)propose
a game theoretic analysis framework and a novel family of
analyses, (4)give a detailed analytic and simulation results to
show how to use our approach to analyze the game.

7. CONCLUSIONS

In this paper, we proposed a Bayesian game theoretic
analysis to infer “How resilient is the Internet against DDoS
attacks?” from the angle of modeling and computing the
motives, strategies and payoffs of the defender, namely the
Internet, and the DDoS attacker. We model countering Class
B DDoS attacks as a Bayesian game. We do a high volume of
simulations to compute an approximate solution of the game.
And we propose a family of Nash equilibrium based resilience
analyses. Our analysis not only estimates theupperbound of
the Internet’s resilience under Class B DDoS attacks, but also
shows which kinds of Class B DDoS attacks are more likely
to be enforced by the attacker in our simulation. Our analysis
may substantially improve people’s understanding about the
nature of (a) the DDoS threat and (b) the Internet’s resilience
against this threat.

In the future work, we plan to (a) use more advanced
“testbeds” such as EmuLab and real world testbeds and (b)
do more analytical study to validate and refine the findings
discovered throughout this research.
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